Cross-Protective Efficacy of Influenza Virus M2e Containing Virus-Like Particles Is Superior to Hemagglutinin Vaccines and Variable Depending on the Genetic Backgrounds of Mice
نویسندگان
چکیده
Influenza virus M2 extracellular domain (M2e) has been a target for developing cross-protective vaccines. However, the efficacy and immune correlates of M2e vaccination are poorly understood in the different host genetic backgrounds in comparison with influenza vaccines. We previously reported the cross-protective efficacy of virus-like particle (M2e5x VLP) vaccines containing heterologous tandem M2e repeats (M2e5x) derived from human, swine, and avian influenza viruses. In this study to gain better understanding of cross-protective influenza vaccines, we compared immunogenicity and efficacy of M2e5x VLP, H5 hemagglutinin VLP (HA VLP), and inactivated H3N2 virus (H3N2i) in wild-type strains of BALB/c and C57BL/6 mice, and CD4 and CD8 knockout (KO) mice. M2e5x VLP was superior to HA VLP in conferring cross-protection whereas H3N2i inactivated virus vaccine provided high efficacy of homologous protection. After M2e5x VLP vaccination and challenge, BALB/c mice induced higher IgG responses, lower lung viral loads, and less body weight loss when compared with those in C57BL/6 mice. M2e5x VLP but not H3N2i immune mice after primary challenges developed strong immunity against a secondary heterosubtypic virus as a model of future pandemics. M2e5x VLP and HA VLP vaccines were able to raise IgG isotypes in CD4 KO mice. T cells were found to contribute to cross-protection by playing a role in reducing lung viral loads. In conclusion, M2e5x VLP vaccination induced better cross-protection than HA VLP, and its efficacy varied depending on the genetic backgrounds of mice, supporting the important roles of T cells.
منابع مشابه
Heamagglutinin Conserved Domain (HA2) Prepared in Prokaryotic System is Immunogenic in Mice but not Protective against Lethal Influenza Challenge
Background and Aims: Influenza vaccine production process is time-consuming with little-to-no cross-protection which requires annual adjustment. The construction of a universal vaccine to deal with the pandemics and epidemics which occasionally threat human population is the aim of many researches worldwide. Today, influenza vaccines are mostly against two major antigenic proteins, hemagglutini...
متن کاملUse of N-trimethyl chitosan for intranasal delivery of DNA encoding M2e-HSP70c in mice
BACKGROUND: Influenza outbreak has become a great lifethreateningdisease in the world. Nasal vaccines can inducesystemic IgG and mucosal IgA antibody responses, whichestablish two layers of immune defense against the infectiouspathogens like influenza. Mucosal vaccines must overcomeseveral limitations, including the mucociliary clearance andinefficient uptake of soluble antigens. Therefore, nas...
متن کاملIntranasal adenovirus-vectored vaccine for induction of long-lasting humoral immunity-mediated broad protection against influenza in mice.
UNLABELLED Influenza vaccines aimed at inducing antibody (Ab) responses against viral surface hemagglutinin (HA) and neuraminidase (NA) provide sterile immunity to infection with the same subtypes. Vaccines targeting viral conserved determinants shared by the influenza A viruses (IAV) offer heterosubtypic immunity (HSI), a broad protection against different subtypes. We proposed that vaccines t...
متن کاملImmunogenicity of Live Attenuated B. pertussis BPZE1 Producing the Universal Influenza Vaccine Candidate M2e
BACKGROUND Intranasal delivery of vaccines directed against respiratory pathogens is an attractive alternative to parenteral administration. However, using this delivery route for inactivated vaccines usually requires the use of potent mucosal adjuvants, and no such adjuvant has yet been approved for human use. METHODOLOGY/PRINCIPAL FINDINGS We have developed a live attenuated Bordetella pert...
متن کاملMechanisms of Cross-protection by Influenza Virus M2-based Vaccines
Current influenza virus vaccines are based on strain-specific surface glycoprotein hemagglutinin (HA) antigens and effective only when the predicted vaccine strains and circulating viruses are well-matched. The current strategy of influenza vaccination does not prevent the pandemic outbreaks and protection efficacy is reduced or ineffective if mutant strains emerge. It is of high priority to de...
متن کامل